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We report on spatiotemporal evolution of relativistically intense longitudinal electron plasma waves in a cold
homogeneous plasma, using the physically appealing Dawson sheet model. Calculations presented here in
the weakly relativistic limit clearly show that under very general initial conditions, a relativistic wave
will always phase mix and eventually break at arbitrarily low amplitudes, in a time scale �pe�mix

�� 3
64��pe

2 �3 /c2k2����k /k� / ��1+�k /k����1+1 / �1+�k /k���−1. We have verified this scaling with respect to am-
plitude of perturbation � and width of the spectrum ��k /k� using numerical simulations. This result may be of
relevance to ultrashort, ultraintense laser pulse-plasma interaction experiments where relativistically intense
waves are excited.
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I. INTRODUCTION

The study of spatiotemporal evolution of relativistically
intense large amplitude �eE /m�pc�1� nonlinear plasma
waves in a cold homogeneous plasma is a subject of funda-
mental interest to nonlinear plasma theory. Practically, non-
linear plasma waves having relativistically large amplitudes
arise in a number of situations involving interaction of an
ultrashort, ultraintense ��1018 W /cm2, for a 1 �m wave-
length laser� laser pulse or an electron beam pulse �0.5 GeV,
carrying 1 kA current, focussed to 3 �m spot size
	1018 W /cm2� with a plasma. Experiments on laser assisted
nuclear fusion and particle acceleration �laser-plasma wake-
field acceleration� are examples of this kind. In laser fusion
experiments, an intense laser pulse falls on an overdense
plasma and excites plasma waves through mode conversion
whereas in particle acceleration experiments, an intense laser
pulse or electron beam propagating through an underdense
plasma excites a large amplitude wakefield which then traps
background plasma electrons or externally injected electrons
and accelerates them to high energies. Amplitudes of these
relativistically intense waves are limited by wave breaking
which happens through a variety of nonlinear effects. Physi-
cally, plasma waves break when neighboring electron orbits
cross, thus leading to conversion of coherent wave motion
into random particle motion. In laser fusion experiments,
wave breaking results in generation of energetic electrons
which eventually leads to heating of the core and in particle
accelerator experiments, wave breaking limits the maximum
achievable “useful” accelerating electric field. Thus in both
these situations, a pertinent issue regarding large amplitude
plasma waves is the maximum magnitude of the wave elec-
tric field that can be attained without wave breaking.

It is now common knowledge that in a cold homogeneous
plasma with infinitely massive ions, coherent wave motion
can occur provided the Akhiezer-Polovin limit is
satisfied, i.e., eE /m�pec�
2��ph−1�1/2 �1� �where �ph= �1
−vph

2 /c2�−1/2�. Modification to this expression due to thermal
motion of electrons have also been evaluated �2–5�. Regard-

ing this cold plasma relativistic wave breaking limit, a point
needs to be emphasized here is that, this wave breaking limit
has been derived for a wave �or a nonlinear structure� mov-
ing with a constant phase velocity vph. This can either be a
single wave with well defined � and k or a very special
combination of �� ,k� and its harmonics such that they
propagate together as a coherent nonlinear mode �e.g., cold
plasma Bernstein-Greene-Kruskal �BGK� modes �6� in the
case of nonrelativistic waves�. In a realistic ultrashort ultra-
high intensity laser-plasma interaction experiment, it is likely
that a spectrum of plasma waves with an arbitrary spread in
�k �and hence in �vph� is excited due to group velocity
dispersion and nonlinear distortion of the light pulse near the
critical layer �7–10�. In this regard, it becomes imperative to
ask whether the Akhiezer-Polovin wave breaking limit really
holds for arbitrary initial conditions?

In this paper, we address this question by studying the
evolution of two relativistically intense waves having wave
numbers separated by an amount �k, both analytically and
numerically. Using the physically appealing Dawson sheet
model �11� we show that under very general initial condi-
tions, a relativistic wave will always break at arbitrarily low
amplitudes via a phenomenon called phase mixing; and
hence the observation of wave breaking phenomenon is not
limited in general by the Akhiezer-Polovin criterion.

In Sec. II, we present the relativistic equation of motion of
an electron sheet and its solution using the Bogoliubov and
Krylov method of averaging. Section II A contains the solu-
tion for a particular set of initial conditions representing two
waves having wave numbers separated by an amount �k.
This solution clearly exhibits the phenomenon of phase mix-
ing. In Sec. II B, we analytically demonstrate that phase mix-
ing eventually leads to the appearance of density spikes
�wave breaking�. Here we also make an estimate of the time
scale ��pe�mix� in which a relativistically intense wave will
break via the process of phase mixing, and it dependence on
the amplitude “�” and the width of the spectrum “�k /k.” In
Sec. III, using a code based on Dawson sheet model, we
numerically demonstrate the phenomenon of phase mixing
and the gradual progress towards wave breaking. We also
numerically verify the scaling of �pe�mix on � and �k /k.
Finally Sec. IV contains our conclusion.*sudip@ipr.res.in
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II. EQUATION OF MOTION AND APPROXIMATE
SOLUTION

We start with the relativistic equation of motion of a sheet
which is given as

d

d�

	̇


1 −
	̇2

c2

= −
e

m
E�x,t� , �1�

where x=x0+	�x0 ,��, 	 being the displacement of the sheet
from its equilibrium position x0 �Lagrange coordinate�, x is
its Euler coordinate and the dot represents differentiation
with respect to Lagrange time �. The momentum of the sheet

is given by p=m�v=m	̇ /
1− 	̇2 /c2 and electric field on the
sheet is given by Gauss’ law as E=4
n0e	, n0 being the
equilibrium number density. Using this expression for elec-
tric field in Eq. �1�, the equation of motion becomes

	̈

�1 −
	̇2

c2�3/2 + �pe
2 	 = 0, �2�

where �pe
2 =4
n0e2 /m is the nonrelativistic plasma fre-

quency. In the weakly relativistic limit, Eq. �2� reduces to

	̈ + �pe
2 	 −

3

2

�pe
2

c2 		̇2 	 0. �3�

Using the Bogoliubov and Krylov method of averaging �12�
the solution of Eq. �3� can be written as

	�x0,�� 	 	0�x0�sin��̃pe� + �0�x0�� , �4�

where

�̃pe 	 �pe�1 −
3

16

�pe
2 	0

2�x0�
c2 � . �5�

The second term in Eq. �5� gives the nonlinear frequency
shift due to relativistic variation of electron mass. The solu-
tion given by Eq. �4� and the nonlinear frequency shift �Eq.
�5�� depend upon two unknown functions of x0 viz. 	0�x0�
and �0�x0�. These are determined from the initial conditions
of the problem. In the subsection below, we determine them
for a set of initial conditions representing two waves having
wave numbers separated by an amount �k.

A. Phase mixing

We choose the initial electron density and velocity profile,
respectively, as

ne�x,0� = n0
1 + � cos��k

2
x�cos�k +

�k

2
�x� �6�

and

ve�x,0� =
�pe�

2

1

k
cos�kx� +

1

k + �k
cos�k + �k�x� . �7�

In the linear nonrelativistic limit these represent the initial
conditions for two propagating sinusoidal waves with ampli-

tude � whose wave numbers differ by an amount �k. �k
→0 and �k=−2k, respectively, represent the initial condition
for a single wave with well defined � and k and a standing
wave �oscillation�. Using the above two initial conditions we
now determine the two unknown functions 	0�x0� and �0�x0�
as follows. Using the initial velocity profile �7�, we get

	0�x0�cos��0�x0�� =
�

2

1

k
cos�kxl� +

1

k + �k
cos�k + �k�xl� ,

�8�

where xl=x0+	�x0 ,0� the initial position of a sheet, is chosen
as a new Lagrange coordinate. Now, using Gauss’ law
E�x0 ,0�=4
n0e	�x0 ,0� and the initial density profile �Eq.
�6��, we get

	0�x0�sin��0�x0�� = −
�

2

1

k
sin�kxl� +

1

k + �k
sin�k + �k�xl� .

�9�

Squaring and adding Eqs. �8� and �9� and taking the ratio of
Eq. �9� to Eq. �8� give 	0�x0� and �0�x0� in terms of xl as

	0�x0� =
�

2

 1

k2 +
1

�k + �k�2 +
2

k�k + �k�
cos��kxl��1/2

�10�

and

tan��0�x0�� = −

1

k
sin�kxl� +

1

k + �k
sin�k + �k�xl�


1

k
cos�kxl� +

1

k + �k
cos�k + �k�xl� .

�11�

Since xl=x0+	�x0 ,0�=x0+	0�x0�sin��0�x0��, Eqs. �10� and
�11� represent two coupled transcendental equations for
	0�x0� and �0�x0�. Using the expression for 	0�x0� from Eqs.
�10� in �5�, the modified plasma frequency finally stands as

�̃pe 	 �pe
1 −
3

64

�pe
2 �2

c2k2 �1 +
k2

�k + �k�2

+
2k

�k + �k�
cos��kxl��� . �12�

It is clear from the above expression that the nonlinear fre-
quency shift �and hence the modified plasma frequency�, for
arbitrary value of �k, is in general space dependent; it de-
pends on the initial position of sheets. This spatial depen-
dence of plasma frequency causes different pieces of the os-
cillation to go out of phase with time, resulting in a
phenomenon called phase mixing. In Fourier space �“k”
space�, the manifestation of phase mixing is seen by the ap-
pearance of higher harmonics �as numerically shown in a
later section�; the energy which is initially loaded on the
modes k and k+�k gradually shifts towards higher “k” val-
ues. This gradual transfer of energy from low “k” modes to
high “k” modes can be interpreted as damping of the primary
wave due to mode coupling to higher modes. The interaction
of high “k” modes with particles efficiently takes up energy
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from the wave and causes the particles to accelerate and the
wave to damp. Further generation of higher harmonics with
time also shows up in the particle density profile which be-
comes more spiky in nature. Eventually phase mixing leads
to crossing of electron trajectories which within the cold
plasma model results in singularities in the electron density
profile �wave breaking�. We numerically demonstrate the
aforementioned processes in Sec. IV.

The process of phase mixing leading to wave breaking
which is characterized by appearance of density spikes, has
been observed earlier in nonrelativistic inhomogeneous plas-
mas where the inhomogeneity is either a static one �infinitely
massive ions �11,13,14�� or is self-consistently generated
through low-frequency ponderomotive forces which in turn
originates from the oscillating electric field of plasma oscil-
lations in the presence of finite mass ion background �15�. As
a result of inhomogeneity, plasma frequency becomes a func-
tion of position and phase mixing happens. In the present
relativistic case, phase mixing occurs even without back-
ground inhomogeneity, which as shown above happens due
to relativistic variation of electron mass. Hence a relativisti-
cally intense wave will always phase mix and eventually
break at arbitrarily low values of amplitude �. Only for the
singular case of �k=0, does �̃pe becomes spatially indepen-
dent and hence does not exhibit phase mixing. For the spe-
cial case of standing waves, occurrence of wave breaking
�appearance of density spikes� has been reported earlier by
Infeld et al. �16�. In fact for �k=−2k, our expression �12�
reduces to

�̃pe = �pe
1 −
3

16

�pe
2 �2

c2k2 sin2�kxl�� �13�

which is Eq. �20� of Ref. �16�. To clearly demonstrate that
phase mixing eventually leads to density bursts �wave break-
ing� and to estimate the phase mixing time scale, we evaluate
the electron density in the next subsection.

B. Occurrence of density bursts and phase mixing time

Starting with Gauss’ law, we get

�E

�x
= 4
n0e

�	

�x
= − 4
eñe, �14�

where ñe is perturbed electron density. Therefore,

�	

�xl
= −

ñe

n0

�x

�xl
. �15�

Writing x=xl−	�x0 ,0�+	�x0 ,�� and substituting for �x /�xl in
the above equation, the expression for electron density can
be written as

ne�xl,�� =
n0

1 +
�	/�xl

�1 − �	/�xl��=0

. �16�

Computing �	 /�xl using Eqs. �4� and �10�–�12� and substi-
tuting in the above expression, we get the final expression for
electron density in terms of Lagrange coordinate �xl ,�� as

ne�xl,�� =

n0
1 + � cos��k

2
xl�cos�k +

�k

2
�xl�

1 + � cos��k

2
xl��cos�k +

�k

2
�xl − cos
�k +

�k

2
�xl + �̃pe�� + A�pe� sin��k

2
xl�� , �17�

where

A =
3

32

�pe
2 �2

c2

�k

k�k + �k��1

k
cos��̃pe� − kxl�

+
1

k + �k
cos��̃pe� − �k + �k�xl�� . �18�

The secular term which appears in the denominator of Eq.
�17� due to the dependence of plasma frequency �̃pe on the

initial position of sheets �xl�, causes the denominator to van-
ish in a time scale ��pe�mix� which is given by

�pe�mix �� 3

64

�pe
2 �3

c2k2

��k/k�
�1 + �k/k��1 +

1

�1 + �k/k���−1

.

�19�

This clearly indicates that phase mixing eventually leads to
electron density bursts �wave breaking�. For the special case
of standing waves �k=−2k �oscillations�, Eq. �17� becomes

ne�xl,�� =
n0�1 + � cos�kxl��

1 + � cos�kxl�
1 − cos��̃pe�� − �pe�
3

8

�pe
2 �2

c2k2 sin2�kxl�sin��̃pe��� , �20�
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where �̃pe is given by Eq. �13�. As expected, Eq. �20�
matches Eq. �19� of Ref. �16�.

III. NUMERICAL VERIFICATION

Using a code based on Dawson sheet model, we numeri-
cally follow the process of phase mixing of two relativisti-
cally intense waves separated in wave number by an amount
�k, i.e., we follow the gradual damping of the primary mode
�the mode on which energy is initially loaded� along with the
simultaneous generation of higher harmonics until it culmi-
nates in wave breaking. We also numerically verify the de-
pendence of phase mixing time, Eq. �19�, on the amplitude of
perturbation � and the spectral width �k /k. For this purpose
we have used a one-dimensional sheet code where we have
followed the motion of an array of �104 electron sheets. The

sheets are initially loaded in phase space �17� so as to repre-
sent the initial density and velocity perturbations as given by
Eqs. �6� and �7�, respectively. Using these initial conditions,
the equation of motion �2� for each sheet is then solved using
fourth-order Runge-Kutta scheme. At each time step, order-
ing of the sheets is checked for sheet crossing. Phase mixing
time is measured as the time taken by any two of the adja-
cent sheets to cross over. We terminate our code at this time,
because equation of motion �2� becomes invalid beyond this
point. Extension of our code, to take account of sheet cross-
ing will be addressed in future.

Now in order to elucidate the phase mixing process, we
have measured the evolution of electron density profile as a
function of time. For this purpose we superimpose a spatial
grid in the region where the sheets are oscillating, thereby
dividing the whole region into cells. The electron density is
measured at the cell centres using cloud-in-cell method �17�.
Figure 1 shows the time evolution of the first four density
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FIG. 1. Temporal evolution of first four density modes for �
�0.2 and �k /k=−2.0 �standing waves�.
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FIG. 2. Number density vs mode number for ��0.2 and �k /k
=−2.0 at �pe��0.0 �inset� and at �pe�mix�774.0 �phase mixing
time�.
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modes for ��0.2 and �k /k�−2.0. It clearly shows the de-
cay of the primary mode and the growth of higher harmonics
with time. Figure 2 shows the spectrum at �pe�=0 �see inset�
and at �pe�mix�774.0 �phase mixing time�. It also shows
that the energy which is initially loaded on the primary mode
eventually distributes over higher modes. The total energy
�kinetic+field� of the system is conserved in our code to
order �10−7. The interaction of high “k” modes with the
particles �sheets� accelerates the particles causing the initial
�-function momentum distribution to spread. Figure 3 shows
the momentum distribution at a time close to the phase mix-
ing time ��pe�mix�774.0�. It clearly shows generation of
multistream flow, another signature of wave breaking �11�.
We further show that generation of higher harmonics, in con-
figuration space causes the density profile to become more
and more spiky. Figure 4 shows the numerically measured
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FIG. 5. Temporal evolution of first four density modes for �
�0.2 and �k /k=−0.5.
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and �k /k=−0.5; the broken line shows the numerical profile and
the continuous line shows the analytical profile.
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density profile along with the analytical expression �17� at a
time very close to the phase mixing time. The close fit with
numerical results gives good credence to our analytical ex-
pressions. Thus �Figs. 1–4 clearly illustrate the processes
mentioned in Sec. II A�. Figures 5–8 show similar behavior
for a different set of parameters ��0.2 and �k /k�−0.5.

We now present the variation of phase mixing time with
respect to the amplitude of density perturbation and spectral
width. Figures 9 and 10 show the variation of phase mixing
time with � for two values of �k /k, �−2.0 �pure oscilla-
tions� and �−0.5. The points represent the simulation results
and the solid lines represent �1 /�3 fit. The observed devia-
tion at large � is due to the breakdown of Bogoliubov ap-
proximation around eE /m�pec�0.6. Figure 11 shows the
variation of phase mixing time with the spectral width �k /k
for a fixed value of ��0.1. Here again, the points represent
the simulation results and the solid line represents the fit
obtained from Eq. �19�. In both cases, the analytical expres-
sion �19� shows a very good fit to the observed numerical
results, thus vindicating our weakly relativistic calculation.

IV. CONCLUSION

In conclusion, we have shown that a relativistically in-
tense longitudinal wave excited in a cold homogeneous
plasma, either by a ultrashort ultraintense laser pulse or by an
electron beam pulse will always phase mix and eventually
break at arbitrarily low amplitudes and is thus not limited by

the Akhiezer-Polovin criterion. Energy when loaded in a low
“k” mode, with time gradually gets distributed into high k
modes. An important corollary of our work is that, the
Akhiezer-Polovin nonlinear longitudinal stationary solution
is a solution of zero measure which may decay when sub-
jected to an arbitrarily small amplitude longitudinal pertur-
bation. The decay time �phase mixing time�, i.e., the time in
which particle orbits cross �wave breaking occurs� is given

by �pe�mix�� 3
64

�pe
2 �3

c2k2
��k/k�

�1+�k/k� �1+ 1
�1+�k/k� ��

−1, where � is the am-
plitude of perturbation and �k /k is spectral width of the
excited waves. Some early evidence of this damping of
wakefield plasma waves can be seen in the experiment of
Rosenzweig et al. �9�. In that experiment longitudinal plasma
waves are excited in the wake of a 21 MeV electron beam
pulse propagating through a plasma of density n0�2.8
�1013 cm−3. From their experimental measurements we can
take ��0.48 and �k /k�−2.0, giving a phase mixing time of
order �mix�160 ps. Their experimental measurements
clearly show damping of the plasma wave of the order of
�44% in 80 ps indicating that in �160 ps the wave should
damp completely. For a more precise validation of the
mechanism we have proposed in this paper, it would be in-
teresting to carry out experiments that would follow the
wave evolution over a longer period. Such experimental veri-
fication would facilitate a practical application of our results
to plasma based acceleration schemes as well as laser based
fusion schemes.
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